Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds

Fabrice Baudoin*, Jing Wang

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

22 Citationer (Scopus)

Abstract

We study curvature dimension inequalities for the sub-Laplacian on contact Riemannian manifolds. This new curvature dimension condition is then used to obtain: • Geometric conditions ensuring the compactness of the underlying manifold (Bonnet-Myers type results); • Volume estimates of metric balls; • Gradient bounds and stochastic completeness for the heat semigroup generated by the sub-Laplacian; • Spectral gap estimates.

OriginalsprogEngelsk
TidsskriftPotential Analysis
Vol/bind40
Nummer2
Sider (fra-til)163-193
Antal sider31
ISSN0926-2601
DOI
StatusUdgivet - feb. 2014
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds'. Sammen danner de et unikt fingeraftryk.

Citationsformater