Abstract
We study curvature dimension inequalities for the sub-Laplacian on contact Riemannian manifolds. This new curvature dimension condition is then used to obtain: • Geometric conditions ensuring the compactness of the underlying manifold (Bonnet-Myers type results); • Volume estimates of metric balls; • Gradient bounds and stochastic completeness for the heat semigroup generated by the sub-Laplacian; • Spectral gap estimates.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Potential Analysis |
Vol/bind | 40 |
Nummer | 2 |
Sider (fra-til) | 163-193 |
Antal sider | 31 |
ISSN | 0926-2601 |
DOI | |
Status | Udgivet - feb. 2014 |
Udgivet eksternt | Ja |