Currents and K-functions for Fiber Point Processes

Pernille E. H. Hansen*, Rasmus Waagepetersen, Anne Marie Svane, Jon Sporring, Hans J. T. Stephensen, Stine Hasselholt, Stefan Sommer

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisKonferenceartikelForskningpeer review

Abstract

Analysis of images of sets of fibers such as myelin sheaths or skeletal muscles must account for both the spatial distribution of fibers and differences in fiber shape. This necessitates a combination of point process and shape analysis methodology. In this paper, we develop a K-function for fiber-valued point processes by embedding shapes as currents, thus equipping the point process domain with metric structure inherited from a reproducing kernel Hilbert space. We extend Ripley’s K-function which measures deviations from complete spatial randomness of point processes to fiber data. The paper provides a theoretical account of the statistical foundation of the K-function, and we apply the K-function on simulated data and a data set of myelin sheaths. This includes a fiber data set consisting of myelin sheaths configurations at different debts.
OriginalsprogEngelsk
BogserieLecture Notes in Computer Science
Vol/bind12829
Sider (fra-til)127-134
Antal sider8
ISSN0302-9743
DOI
StatusUdgivet - jul. 2021
BegivenhedGeometric Science of Information: 5th International Conference - Paris, Frankrig
Varighed: 21 jul. 202123 jul. 2021

Konference

KonferenceGeometric Science of Information
Land/OmrådeFrankrig
ByParis
Periode21/07/202123/07/2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Currents and K-functions for Fiber Point Processes'. Sammen danner de et unikt fingeraftryk.

Citationsformater