Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Forlagets udgivne version
The formation of strongly bound atmospheric molecular clusters is the first step towards forming new aerosol particles. Recent advances in the application of machine learning models open an enormous opportunity for complementing expensive quantum chemical calculations with efficient machine learning predictions. In this Perspective, we present how data-driven approaches can be applied to accelerate cluster configurational sampling, thereby greatly increasing the number of chemically relevant systems that can be covered.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Nature Computational Science |
Vol/bind | 3 |
Nummer | 6 |
Sider (fra-til) | 495-503 |
Antal sider | 9 |
ISSN | 2662-8457 |
DOI | |
Status | Udgivet - jun. 2023 |
Se relationer på Aarhus Universitet Citationsformater
ID: 333437928