Current and future machine learning approaches for modeling atmospheric cluster formation

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

The formation of strongly bound atmospheric molecular clusters is the first step towards forming new aerosol particles. Recent advances in the application of machine learning models open an enormous opportunity for complementing expensive quantum chemical calculations with efficient machine learning predictions. In this Perspective, we present how data-driven approaches can be applied to accelerate cluster configurational sampling, thereby greatly increasing the number of chemically relevant systems that can be covered.

OriginalsprogEngelsk
TidsskriftNature Computational Science
Vol/bind3
Nummer6
Sider (fra-til)495-503
Antal sider9
ISSN2662-8457
DOI
StatusUdgivet - jun. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Current and future machine learning approaches for modeling atmospheric cluster formation'. Sammen danner de et unikt fingeraftryk.

Citationsformater