Cubical sets as a classifying topos

Publikation: KonferencebidragKonferenceabstrakt til konferenceForskning

203 Downloads (Pure)

Abstract

Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’.
This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation with Coquand’s. We do not exclude that the interval can also be used to construct other models.
OriginalsprogEngelsk
Publikationsdato2015
Antal sider2
StatusUdgivet - 2015
Begivenhed21st International Conference on Types for Proofs and Programs, : TYPES 2015 - Tallinn, Estland
Varighed: 18 maj 201521 maj 2015

Konference

Konference21st International Conference on Types for Proofs and Programs,
Land/OmrådeEstland
ByTallinn
Periode18/05/201521/05/2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'Cubical sets as a classifying topos'. Sammen danner de et unikt fingeraftryk.

Citationsformater