Aarhus Universitets segl

Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. / Kanai, Ryuta; Ogawa, Haruo; Vilsen, Bente et al.
I: Nature, Bind 502, Nr. 7470, 10.10.2013, s. 201-6.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

Kanai, R, Ogawa, H, Vilsen, B, Cornelius, F & Toyoshima, C 2013, 'Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state', Nature, bind 502, nr. 7470, s. 201-6. https://doi.org/10.1038/nature12578

APA

Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., & Toyoshima, C. (2013). Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature, 502(7470), 201-6. https://doi.org/10.1038/nature12578

CBE

Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. 2013. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature. 502(7470):201-6. https://doi.org/10.1038/nature12578

MLA

Vancouver

Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature. 2013 okt. 10;502(7470):201-6. doi: 10.1038/nature12578

Author

Kanai, Ryuta ; Ogawa, Haruo ; Vilsen, Bente et al. / Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. I: Nature. 2013 ; Bind 502, Nr. 7470. s. 201-6.

Bibtex

@article{9682d76be6ab4b379a50fcd3c23ffba5,
title = "Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state",
abstract = "Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 {\AA}-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.",
keywords = "Na bindingssteder",
author = "Ryuta Kanai and Haruo Ogawa and Bente Vilsen and Flemming Cornelius and Chikashi Toyoshima",
note = "impact factor 38.6 (ISI Web of Knowledge)",
year = "2013",
month = oct,
day = "10",
doi = "10.1038/nature12578",
language = "English",
volume = "502",
pages = "201--6",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7470",

}

RIS

TY - JOUR

T1 - Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state

AU - Kanai, Ryuta

AU - Ogawa, Haruo

AU - Vilsen, Bente

AU - Cornelius, Flemming

AU - Toyoshima, Chikashi

N1 - impact factor 38.6 (ISI Web of Knowledge)

PY - 2013/10/10

Y1 - 2013/10/10

N2 - Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.

AB - Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.

KW - Na bindingssteder

U2 - 10.1038/nature12578

DO - 10.1038/nature12578

M3 - Journal article

C2 - 24089211

VL - 502

SP - 201

EP - 206

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7470

ER -