Publikation: Bidrag til bog/antologi/rapport/proceeding › Konferencebidrag i proceedings › Forskning › peer review
Forlagets udgivne version
We present Continual Inference, a Python library for implementing Continual Inference Networks (CINs), a class of Neural Networks designed for redundancy-free online inference. This paper offers a comprehensive introduction and guide to CINs and their implementation, as well as best-practices and code examples for composing basic modules into complex neural network architectures that perform online inference with an order of magnitude less floating-point operations than their non-CIN counterparts. Continual Inference provides drop-in replacements of PyTorch modules and is readily downloadable via the Python Package Index and at www.github.com/lukashedegaard/continual-inference.
Originalsprog | Engelsk |
---|---|
Titel | Computer Vision – ECCV 2022 Workshops, Proceedings |
Redaktører | Leonid Karlinsky, Tomer Michaeli, Ko Nishino |
Antal sider | 14 |
Forlag | Springer |
Udgivelsesår | 2023 |
Sider | 21-34 |
ISBN (trykt) | 9783031250811 |
DOI | |
Status | Udgivet - 2023 |
Begivenhed | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Varighed: 23 okt. 2022 → 27 okt. 2022 |
Konference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Land | Israel |
By | Tel Aviv |
Periode | 23/10/2022 → 27/10/2022 |
Serietitel | Lecture Notes in Computer Science (LNCS) |
---|---|
Vol/bind | 13807 |
ISSN | 0302-9743 |
Funding Information:
Acknowledgement. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871449 (OpenDR).
Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Se relationer på Aarhus Universitet Citationsformater
ID: 316015909