Constructive algebraic integration theory without choice

Bas Spitters*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisKonferenceartikelForskningpeer review

1 Citationer (Scopus)

Abstract

We present a constructive algebraic integration theory. The theory is constructive in the sense of Bishop, however we avoid the axiom of countable, or dependent, choice. Thus our results can be interpreted in any topos. Since we avoid impredicative methods the results may also be interpreted in Martin-L type theory or in a predicative topos in the sense of Moerdijk and Palmgren. We outline how to develop most of Bishop's theorems on integration theory that do not mention points explicitly. Coquand's constructive version of the Stone representation theorem is an important tool in this process. It is also used to give a new proof of Bishop's spectral theorem.

OriginalsprogEngelsk
TidsskriftDagstuhl Seminar Proceedings
Vol/bind5021
ISSN1862-4405
StatusUdgivet - 2006
BegivenhedMathematics, Algorithms, Proofs 2005 - Wadern, Tyskland
Varighed: 9 jan. 200514 jan. 2005

Konference

KonferenceMathematics, Algorithms, Proofs 2005
Land/OmrådeTyskland
ByWadern
Periode09/01/200514/01/2005

Fingeraftryk

Dyk ned i forskningsemnerne om 'Constructive algebraic integration theory without choice'. Sammen danner de et unikt fingeraftryk.

Citationsformater