Constructing Neural Network Based Models for Simulating Dynamical Systems

Christian Møldrup Legaard, Thomas Schranz, Gerald Schweiger, Jan Drgona, Basak Falay, Cláudio Gomes, Alexandros Iosifidis, Mahdi Abkar, Peter Gorm Larsen

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Dynamical systems see widespread use in natural sciences like physics, biology, and chemistry, as well as engineering disciplines such as circuit analysis, computational fluid dynamics, and control. For simple systems, the differential equations governing the dynamics can be derived by applying fundamental physical laws. However, for more complex systems, this approach becomes exceedingly difficult. Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system. In recent years, there has been an increased interest in applying data-driven modeling techniques to solve a wide range of problems in physics and engineering. This article provides a survey of the different ways to construct models of dynamical systems using neural networks. In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome. Based on the reviewed literature and identified challenges, we provide a discussion on promising research areas.

OriginalsprogEngelsk
Artikelnummer236
TidsskriftACM Computing Surveys
Vol/bind55
Nummer11
Sider (fra-til)1-34
Antal sider34
ISSN0360-0300
DOI
StatusUdgivet - feb. 2023

Fingeraftryk

Dyk ned i forskningsemnerne om 'Constructing Neural Network Based Models for Simulating Dynamical Systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater