Constraints on CaCO3 precipitation in superabsorbent polymer by aerobic bacteria

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

Microbially induced CaCO3 precipitation (MICP) can give concrete self-healing properties. MICP agents are typically bacterial endospores which are coated into shelled granules, infused into expanded clay, or embedded into superabsorbent polymer (SAP). When small cracks appear in the cured concrete, the encapsulation is broken and the metabolic CO2 production from the germinated bacteria causes healing of the cracks by precipitation of CaCO3. Such systems are being tested empirically at large scales, but survival of endospores through preparation and application, as well as germination and growth kinetics of the germinated vegetative cells, remains poorly resolved. We encapsulated endospores of Bacillus subtilis and Bacillus alkalinitrilicus in crosslinked acrylamide-based SAP and quantified their germination, growth, and, in the case of B. alkalinitrilicus, CaCO3 precipitation potential. The endospores survived crosslinking and desiccation inside the polymer matrix. Microcalorimetry and microscopy showed that ~ 80% of the encapsulated endospores of both strains readily germinated after rehydration of freeze-dried SAP. Germinated cells grew into dense colonies of cells inside the SAP, and those of B. alkalinitrilicus calcified with up to 0.3 g CaCO3 produced per g desiccated SAP when incubated aerobically. Measurements by planar optodes indicated that the precipitation rates were inherently oxygen limited due to diffusional constraints, rather than limited by electron donor or Ca2+ availability. Such oxygen limitation will limit MICP in all water-saturated and oxygen-dependent systems, and MICP agents based on anaerobic bacteria, e.g., nitrate reducers, should be developed to broaden the applicability of bioactive self-healing concretes to wet and waterlogged environments.

OriginalsprogEngelsk
TidsskriftApplied Microbiology and Biotechnology
Vol/bind104
Nummer1
Sider (fra-til)365-375
Antal sider11
ISSN0175-7598
DOI
StatusUdgivet - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 178478283