Consistent estimation of time-varying loadings in high-dimensional factor models

Jakob Guldbæk Mikkelsen, Eric Hillebrand*, Giovanni Urga

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

13 Citationer (Scopus)

Abstract

In this paper, we develop a two-step maximum likelihood estimator of time-varying loadings in high-dimensional factor models. We specify the loadings to evolve as stationary vector autoregressions (VAR) and show that consistent estimates of the loadings parameters can be obtained. In the first step, principal components are extracted from the data to form factor estimates. In the second step, the parameters of the loadings VARs are estimated as a set of linear regression models with time-varying coefficients. We document the finite-sample properties of the maximum likelihood estimator through an extensive simulation study and illustrate the empirical relevance of the time-varying loadings structure using a large quarterly dataset for the US economy.

OriginalsprogEngelsk
TidsskriftJournal of Econometrics
Vol/bind208
Nummer2
Sider (fra-til)535-562
Antal sider28
ISSN0304-4076
DOI
StatusUdgivet - feb. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Consistent estimation of time-varying loadings in high-dimensional factor models'. Sammen danner de et unikt fingeraftryk.

Citationsformater