Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model

Annastiina Silvennoinen*, Timo Teräsvirta

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

6 Citationer (Scopus)

Abstract

A new multivariate volatility model that belongs to the family of conditional correlation GARCH models is introduced. The GARCH equations of this model contain a multiplicative deterministic component to describe long-run movements in volatility and, in addition, the correlations are deterministically time-varying. Parameters of the model are estimated jointly using maximum likelihood. Consistency and asymptotic normality of maximum likelihood estimators is proved. Numerical aspects of the estimation algorithm are discussed. A bivariate empirical example is provided.

OriginalsprogEngelsk
TidsskriftEconometrics and Statistics
Vol/bind32
Sider (fra-til)57-72
Antal sider16
ISSN2468-0389
DOI
StatusUdgivet - okt. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model'. Sammen danner de et unikt fingeraftryk.

Citationsformater