Consistency and asymptotic normality of M-estimates of scatter on Grassmann manifolds

Corina Ciobotaru, Christian Mazza*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

This work proposes a study of M-estimates of scatter for matrix angular central Gaussian distributions on Grassmann manifold G(m,r) of all vector subspaces of dimension r of Rm. Such distributions are associated to random subspaces generated by r i.i.d. multivariate centred normal random vectors, and are of interest in Bayesian model selection for cointegration. We provide a careful study of the existence and the unicity of such M-estimators using geometrical arguments, and then study their consistency and asymptotic normality.

OriginalsprogEngelsk
Artikelnummer104998
TidsskriftJournal of Multivariate Analysis
Vol/bind190
ISSN0047-259X
DOI
StatusUdgivet - jul. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Consistency and asymptotic normality of M-estimates of scatter on Grassmann manifolds'. Sammen danner de et unikt fingeraftryk.

Citationsformater