Composition formulas in the Weyl calculus

Toshiyuki Kobayashi, Bent Ørsted, Michael Pevzner, André Unterberger

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

    6 Citationer (Scopus)

    Abstract

    In pseudodifferential analysis, the usual composition formula, which has asymptotic value, extends that valid for differential operators. The one developed here is based instead on the decomposition of symbols (functions in Rn×Rn) as integral superpositions of homogeneous ones, of degrees lying on the complex line with real part −n. It extends the one known in the one-dimensional case in connection with automorphic pseudodifferential analysis.
    OriginalsprogEngelsk
    TidsskriftJournal of Functional Analysis
    Vol/bind257
    Nummer4
    Sider (fra-til)948-991
    Antal sider44
    ISSN0022-1236
    DOI
    StatusUdgivet - 2009

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Composition formulas in the Weyl calculus'. Sammen danner de et unikt fingeraftryk.

    Citationsformater