Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • Shelley F.J. Wickham, Harvard University, Dana-Farber Cancer Institute, University of Sydney
  • ,
  • Alexander Auer, Ludwig Maximilian University of Munich, Max Planck Institute of Biochemistry
  • ,
  • Jianghong Min, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Nandhini Ponnuswamy, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Johannes B. Woehrstein
  • Florian Schueder, Ludwig Maximilian University of Munich, Max Planck Institute of Biochemistry
  • ,
  • Maximilian T. Strauss, Ludwig Maximilian University of Munich, Max Planck Institute of Biochemistry
  • ,
  • Jörg Schnitzbauer, Ludwig Maximilian University of Munich, Max Planck Institute of Biochemistry
  • ,
  • Bhavik Nathwani, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Zhao Zhao, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Steven D. Perrault, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Jaeseung Hahn, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Seungwoo Lee, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Maartje M. Bastings, Harvard University, Dana-Farber Cancer Institute
  • ,
  • Sarah W. Helmig, Danish National Research Foundation
  • ,
  • Anne Louise Kodal, Danish National Research Foundation
  • ,
  • Peng Yin, Harvard University
  • ,
  • Ralf Jungmann, Ludwig Maximilian University of Munich, Max Planck Institute of Biochemistry
  • ,
  • William M. Shih, Harvard University, Dana-Farber Cancer Institute

DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of ~90 nm diameter and ~250 nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of ~8 nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology.

OriginalsprogEngelsk
Artikelnummer5768
TidsskriftNature Communications
Vol/bind11
ISSN2041-1723
DOI
StatusUdgivet - nov. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 201144832