Comparison and Validation of Force Fields for Deep Eutectic Solvents in Combination with Water and Alcohol Dehydrogenase

Jan Philipp Bittner, Lei Huang, Ningning Zhang, Selin Kara, Sven Jakobtorweihen*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Deep eutectic solvents (DESs) have become popular as environmental-friendly solvents for biocatalysis. Molecular dynamics (MD) simulations offer an in-depth analysis of enzymes in DESs, but their performance depends on the force field chosen. Here, we present a comprehensive validation of three biomolecular force fields (CHARMM, Amber, and OPLS) for simulations of alcohol dehydrogenase (ADH) in DESs composed of choline chloride and glycerol/ethylene glycol with varying water contents. Different properties (e.g., protein structure and flexibility, solvation layer, and H-bonds) were used for validation. For two properties (viscosity and water activity) also experiments were performed. The viscosity was calculated with the periodic perturbation method, whereby its parameter dependency is disclosed. A modification of Amber was identified as the best-performing model for low water contents, whereas CHARMM outperforms the other models at larger water concentrations. An analysis of ADH's structure and interactions with the DESs revealed similar predictions for Amber and CHARMM.

OriginalsprogEngelsk
TidsskriftJournal of Chemical Theory and Computation
Vol/bind17
Nummer8
Sider (fra-til)5322-5341
Antal sider20
ISSN1549-9618
DOI
StatusUdgivet - aug. 2021

Fingeraftryk

Dyk ned i forskningsemnerne om 'Comparison and Validation of Force Fields for Deep Eutectic Solvents in Combination with Water and Alcohol Dehydrogenase'. Sammen danner de et unikt fingeraftryk.

Citationsformater