Abstract
We prove that the Gromov-Hausdorff compactification of the moduli space of Kahler-Einstein Del Pezzo surfaces in each degree agrees with certain algebro-geometric compactification. In particular, this recovers Tian's theorem on the existence of Kahler- Einstein metrics on smooth Del Pezzo surfaces and classifies all the degenerations of such metrics. The proof is based on a combination of both algebraic and differential geometric techniques.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Differential Geometry |
Vol/bind | 102 |
Nummer | 1 |
Sider (fra-til) | 127-172 |
Antal sider | 46 |
ISSN | 0022-040X |
Status | Udgivet - jan. 2016 |
Udgivet eksternt | Ja |