Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Collaborating with the Machines
T2 - A hybrid method for classifying policy documents
AU - Loftis, Matthew
AU - Mortensen, Peter Bjerre
PY - 2020
Y1 - 2020
N2 - Burgeoning government activity has enabled an important and growing research program into the content and determinants of policy agendas around the world. However, tightening research budgets and the vast scale of available information force political science to aspire to do more with less. Meeting this challenge requires innovation in managing and preparing data. This paper makes two contributions to the practice of data coding to measure the content of political agendas. First, we propose a method of combining human content coding of political agendas and automated computer classification to classify large data sets. Second, we present software and supporting tools to apply a well-known algorithm for automated text classification, the Naı̈ve Bayes classifier. We demonstrate its usefulness for coding large sets of highly unbalanced multiclass data of the sort used to study the political agenda and demonstrate how our hybrid approach can maximize the returns on research budgets.
AB - Burgeoning government activity has enabled an important and growing research program into the content and determinants of policy agendas around the world. However, tightening research budgets and the vast scale of available information force political science to aspire to do more with less. Meeting this challenge requires innovation in managing and preparing data. This paper makes two contributions to the practice of data coding to measure the content of political agendas. First, we propose a method of combining human content coding of political agendas and automated computer classification to classify large data sets. Second, we present software and supporting tools to apply a well-known algorithm for automated text classification, the Naı̈ve Bayes classifier. We demonstrate its usefulness for coding large sets of highly unbalanced multiclass data of the sort used to study the political agenda and demonstrate how our hybrid approach can maximize the returns on research budgets.
KW - Classifying policy documents
KW - Machine coding
KW - Policy agendas
U2 - 10.1111/psj.12245
DO - 10.1111/psj.12245
M3 - Journal article
VL - 48
SP - 184
EP - 206
JO - Policy Studies Journal
JF - Policy Studies Journal
SN - 0190-292X
IS - 1
ER -