Cohomogeneity-one G2-structures

Richard Cleyton, Andrew Swann*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

36 Citationer (Scopus)

Abstract

G2-manifolds with a cohomogeneity-one action of a compact Lie group G are studied. For G simple, all solutions with holonomy G2 and weak holonomy G2 are classified. The holonomy G2 solutions are necessarily Ricci-flat and there is a one-parameter family with SU(3)-symmetry. The weak holonomy G2 solutions are Einstein of positive scalar curvature and are uniquely determined by the simple symmetry group. During the proof the equations for G2-symplectic and G2-cosymplectic structures are studied and the topological types of the manifolds admitting such structures are determined. New examples of compact G2-cosymplectic manifolds and complete G2-symplectic structures are found.

OriginalsprogEngelsk
TidsskriftJournal of Geometry and Physics
Vol/bind44
Nummer2-3
Sider (fra-til)202-220
Antal sider19
ISSN0393-0440
DOI
StatusUdgivet - 1 dec. 2002
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Cohomogeneity-one G2-structures'. Sammen danner de et unikt fingeraftryk.

Citationsformater