Cluster tilting vs. weak cluster tilting in Dynkin type A infinity

Thorsten Holm, Peter Jørgensen

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

11 Citationer (Scopus)

Abstract

This paper shows a new phenomenon in higher cluster tilting theory. For each positive integer d, we exhibit a triangulated category C with the following properties. On the one hand, the d-cluster tilting subcategories of C have very simple mutation behaviour: Each indecomposable object has exactly d mutations. On the other hand, the weakly d-cluster tilting subcategories of C which lack functorial finiteness can have much more complicated mutation behaviour: For each 0 ≤ ℓ ≤ d-1, we show a weakly d-cluster tilting subcategory T which has an indecomposable object with precisely ℓ mutations. The category C is the algebraic triangulated category generated by a (d + 1)-spherical object and can be thought of as a higher cluster category of Dynkin type A.

OriginalsprogEngelsk
TidsskriftForum Mathematicum
Vol/bind27
Nummer2
Sider (fra-til)1117-1137
Antal sider21
ISSN0933-7741
DOI
StatusUdgivet - 1 mar. 2015
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Cluster tilting vs. weak cluster tilting in Dynkin type A infinity'. Sammen danner de et unikt fingeraftryk.

Citationsformater