TY - JOUR
T1 - ChatGPT- versus human-generated answers to frequently asked questions about diabetes
T2 - A Turing test-inspired survey among employees of a Danish diabetes center
AU - Hulman, Adam
AU - Dollerup, Ole Lindgård
AU - Mortensen, Jesper Friis
AU - Fenech, Matthew E
AU - Norman, Kasper
AU - Støvring, Henrik
AU - Hansen, Troels Krarup
PY - 2023/8
Y1 - 2023/8
N2 - Large language models have received enormous attention recently with some studies demonstrating their potential clinical value, despite not being trained specifically for this domain. We aimed to investigate whether ChatGPT, a language model optimized for dialogue, can answer frequently asked questions about diabetes. We conducted a closed e-survey among employees of a large Danish diabetes center. The study design was inspired by the Turing test and non-inferiority trials. Our survey included ten questions with two answers each. One of these was written by a human expert, while the other was generated by ChatGPT. Participants had the task to identify the ChatGPT-generated answer. Data was analyzed at the question-level using logistic regression with robust variance estimation with clustering at participant level. In secondary analyses, we investigated the effect of participant characteristics on the outcome. A 55% non-inferiority margin was pre-defined based on precision simulations and had been published as part of the study protocol before data collection began. Among 311 invited individuals, 183 participated in the survey (59% response rate). 64% had heard of ChatGPT before, and 19% had tried it. Overall, participants could identify ChatGPT-generated answers 59.5% (95% CI: 57.0, 62.0) of the time, which was outside of the non-inferiority zone. Among participant characteristics, previous ChatGPT use had the strongest association with the outcome (odds ratio: 1.52 (1.16, 2.00), p = 0.003). Previous users answered 67.4% (61.7, 72.7) of the questions correctly, versus non-users' 57.6% (54.9, 60.3). Participants could distinguish between ChatGPT-generated and human-written answers somewhat better than flipping a fair coin, which was against our initial hypothesis. Rigorously planned studies are needed to elucidate the risks and benefits of integrating such technologies in routine clinical practice.
AB - Large language models have received enormous attention recently with some studies demonstrating their potential clinical value, despite not being trained specifically for this domain. We aimed to investigate whether ChatGPT, a language model optimized for dialogue, can answer frequently asked questions about diabetes. We conducted a closed e-survey among employees of a large Danish diabetes center. The study design was inspired by the Turing test and non-inferiority trials. Our survey included ten questions with two answers each. One of these was written by a human expert, while the other was generated by ChatGPT. Participants had the task to identify the ChatGPT-generated answer. Data was analyzed at the question-level using logistic regression with robust variance estimation with clustering at participant level. In secondary analyses, we investigated the effect of participant characteristics on the outcome. A 55% non-inferiority margin was pre-defined based on precision simulations and had been published as part of the study protocol before data collection began. Among 311 invited individuals, 183 participated in the survey (59% response rate). 64% had heard of ChatGPT before, and 19% had tried it. Overall, participants could identify ChatGPT-generated answers 59.5% (95% CI: 57.0, 62.0) of the time, which was outside of the non-inferiority zone. Among participant characteristics, previous ChatGPT use had the strongest association with the outcome (odds ratio: 1.52 (1.16, 2.00), p = 0.003). Previous users answered 67.4% (61.7, 72.7) of the questions correctly, versus non-users' 57.6% (54.9, 60.3). Participants could distinguish between ChatGPT-generated and human-written answers somewhat better than flipping a fair coin, which was against our initial hypothesis. Rigorously planned studies are needed to elucidate the risks and benefits of integrating such technologies in routine clinical practice.
KW - Humans
KW - Data Collection
KW - Diabetes Mellitus/diagnosis
KW - Cluster Analysis
KW - Language
KW - Denmark/epidemiology
U2 - 10.1371/journal.pone.0290773
DO - 10.1371/journal.pone.0290773
M3 - Journal article
C2 - 37651381
SN - 1932-6203
VL - 18
JO - PLOS ONE
JF - PLOS ONE
IS - 8
M1 - e0290773
ER -