Characterization of the 1S–2S transition in antihydrogen

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Characterization of the 1S–2S transition in antihydrogen. / Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Johnson, M. A.; Jones, J. M.; Jones, S. A.; Jonsell, S.; Khramov, A.; Knapp, P.; Kurchaninov, L.; Madsen, N.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Momose, T.; Munich, J. J.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

I: Nature, Bind 557, 2018, s. 71-75.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

Ahmadi, M, Alves, BXR, Baker, CJ, Bertsche, W, Capra, A, Carruth, C, Cesar, CL, Charlton, M, Cohen, S, Collister, R, Eriksson, S, Evans, A, Evetts, N, Fajans, J, Friesen, T, Fujiwara, MC, Gill, DR, Hangst, JS, Hardy, WN, Hayden, ME, Isaac, CA, Johnson, MA, Jones, JM, Jones, SA, Jonsell, S, Khramov, A, Knapp, P, Kurchaninov, L, Madsen, N, Maxwell, D, McKenna, JTK, Menary, S, Momose, T, Munich, JJ, Olchanski, K, Olin, A, Pusa, P, Rasmussen, CØ, Robicheaux, F, Sacramento, RL, Sameed, M, Sarid, E, Silveira, DM, Stutter, G, So, C, Tharp, TD, Thompson, RI, van der Werf, DP & Wurtele, JS 2018, 'Characterization of the 1S–2S transition in antihydrogen', Nature, bind 557, s. 71-75. https://doi.org/10.1038/s41586-018-0017-2

APA

Ahmadi, M., Alves, B. X. R., Baker, C. J., Bertsche, W., Capra, A., Carruth, C., Cesar, C. L., Charlton, M., Cohen, S., Collister, R., Eriksson, S., Evans, A., Evetts, N., Fajans, J., Friesen, T., Fujiwara, M. C., Gill, D. R., Hangst, J. S., Hardy, W. N., ... Wurtele, J. S. (2018). Characterization of the 1S–2S transition in antihydrogen. Nature, 557, 71-75. https://doi.org/10.1038/s41586-018-0017-2

CBE

Ahmadi M, Alves BXR, Baker CJ, Bertsche W, Capra A, Carruth C, Cesar CL, Charlton M, Cohen S, Collister R, Eriksson S, Evans A, Evetts N, Fajans J, Friesen T, Fujiwara MC, Gill DR, Hangst JS, Hardy WN, Hayden ME, Isaac CA, Johnson MA, Jones JM, Jones SA, Jonsell S, Khramov A, Knapp P, Kurchaninov L, Madsen N, Maxwell D, McKenna JTK, Menary S, Momose T, Munich JJ, Olchanski K, Olin A, Pusa P, Rasmussen CØ, Robicheaux F, Sacramento RL, Sameed M, Sarid E, Silveira DM, Stutter G, So C, Tharp TD, Thompson RI, van der Werf DP, Wurtele JS. 2018. Characterization of the 1S–2S transition in antihydrogen. Nature. 557:71-75. https://doi.org/10.1038/s41586-018-0017-2

MLA

Vancouver

Ahmadi M, Alves BXR, Baker CJ, Bertsche W, Capra A, Carruth C o.a. Characterization of the 1S–2S transition in antihydrogen. Nature. 2018;557:71-75. https://doi.org/10.1038/s41586-018-0017-2

Author

Ahmadi, M. ; Alves, B. X. R. ; Baker, C. J. ; Bertsche, W. ; Capra, A. ; Carruth, C. ; Cesar, C. L. ; Charlton, M. ; Cohen, S. ; Collister, R. ; Eriksson, S. ; Evans, A. ; Evetts, N. ; Fajans, J. ; Friesen, T. ; Fujiwara, M. C. ; Gill, D. R. ; Hangst, J. S. ; Hardy, W. N. ; Hayden, M. E. ; Isaac, C. A. ; Johnson, M. A. ; Jones, J. M. ; Jones, S. A. ; Jonsell, S. ; Khramov, A. ; Knapp, P. ; Kurchaninov, L. ; Madsen, N. ; Maxwell, D. ; McKenna, J. T. K. ; Menary, S. ; Momose, T. ; Munich, J. J. ; Olchanski, K. ; Olin, A. ; Pusa, P. ; Rasmussen, C. Ø. ; Robicheaux, F. ; Sacramento, R. L. ; Sameed, M. ; Sarid, E. ; Silveira, D. M. ; Stutter, G. ; So, C. ; Tharp, T. D. ; Thompson, R. I. ; van der Werf, D. P. ; Wurtele, J. S. / Characterization of the 1S–2S transition in antihydrogen. I: Nature. 2018 ; Bind 557. s. 71-75.

Bibtex

@article{5dea1740e114480982c99d5a814ce12a,
title = "Characterization of the 1S–2S transition in antihydrogen",
abstract = "In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3–7, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10−12—two orders of magnitude more precise than the previous determination 8 —corresponding to an absolute energy sensitivity of 2 × 10−20 GeV.",
author = "M. Ahmadi and Alves, {B. X. R.} and Baker, {C. J.} and W. Bertsche and A. Capra and C. Carruth and Cesar, {C. L.} and M. Charlton and S. Cohen and R. Collister and S. Eriksson and A. Evans and N. Evetts and J. Fajans and T. Friesen and Fujiwara, {M. C.} and Gill, {D. R.} and Hangst, {J. S.} and Hardy, {W. N.} and Hayden, {M. E.} and Isaac, {C. A.} and Johnson, {M. A.} and Jones, {J. M.} and Jones, {S. A.} and S. Jonsell and A. Khramov and P. Knapp and L. Kurchaninov and N. Madsen and D. Maxwell and McKenna, {J. T. K.} and S. Menary and T. Momose and Munich, {J. J.} and K. Olchanski and A. Olin and P. Pusa and Rasmussen, {C. {\O}.} and F. Robicheaux and Sacramento, {R. L.} and M. Sameed and E. Sarid and Silveira, {D. M.} and G. Stutter and C. So and Tharp, {T. D.} and Thompson, {R. I.} and {van der Werf}, {D. P.} and Wurtele, {J. S.}",
year = "2018",
doi = "10.1038/s41586-018-0017-2",
language = "English",
volume = "557",
pages = "71--75",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",

}

RIS

TY - JOUR

T1 - Characterization of the 1S–2S transition in antihydrogen

AU - Ahmadi, M.

AU - Alves, B. X. R.

AU - Baker, C. J.

AU - Bertsche, W.

AU - Capra, A.

AU - Carruth, C.

AU - Cesar, C. L.

AU - Charlton, M.

AU - Cohen, S.

AU - Collister, R.

AU - Eriksson, S.

AU - Evans, A.

AU - Evetts, N.

AU - Fajans, J.

AU - Friesen, T.

AU - Fujiwara, M. C.

AU - Gill, D. R.

AU - Hangst, J. S.

AU - Hardy, W. N.

AU - Hayden, M. E.

AU - Isaac, C. A.

AU - Johnson, M. A.

AU - Jones, J. M.

AU - Jones, S. A.

AU - Jonsell, S.

AU - Khramov, A.

AU - Knapp, P.

AU - Kurchaninov, L.

AU - Madsen, N.

AU - Maxwell, D.

AU - McKenna, J. T. K.

AU - Menary, S.

AU - Momose, T.

AU - Munich, J. J.

AU - Olchanski, K.

AU - Olin, A.

AU - Pusa, P.

AU - Rasmussen, C. Ø.

AU - Robicheaux, F.

AU - Sacramento, R. L.

AU - Sameed, M.

AU - Sarid, E.

AU - Silveira, D. M.

AU - Stutter, G.

AU - So, C.

AU - Tharp, T. D.

AU - Thompson, R. I.

AU - van der Werf, D. P.

AU - Wurtele, J. S.

PY - 2018

Y1 - 2018

N2 - In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3–7, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10−12—two orders of magnitude more precise than the previous determination 8 —corresponding to an absolute energy sensitivity of 2 × 10−20 GeV.

AB - In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter3–7, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 1015 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10−12—two orders of magnitude more precise than the previous determination 8 —corresponding to an absolute energy sensitivity of 2 × 10−20 GeV.

U2 - 10.1038/s41586-018-0017-2

DO - 10.1038/s41586-018-0017-2

M3 - Journal article

C2 - 29618820

VL - 557

SP - 71

EP - 75

JO - Nature

JF - Nature

SN - 0028-0836

ER -