Chabauty limits of groups of involutions in SL(2,F) for local fields

Corina-Gabriela Ciobotaru, Arielle Leitner

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

We classify Chabauty limits of groups fixed by various (abstract) involutions over SL(2,F), where F is a finite field-extension of Q_p, with p>2. To do so, we first classify abstract involutions over SL(2,F) with F a quadratic extension of Q_p, and prove p-adic polar decompositions with respect to various subgroups of p-adic SL_2. Then we classify Chabauty limits of: Then we classify Chabauty limits of: SL(2,F) ⊂ SL(2,E), where E is a quadratic extension of F, of SL(2,R) ⊂ SL(2,C), and of H_θ⊂SL(2,F), where H_θ is the fixed point group of an F-involution θ over SL(2,F).
OriginalsprogEngelsk
TidsskriftCommunications in Algebra
Vol/bind52
Nummer4
Sider (fra-til)1408-1431
Antal sider24
ISSN0092-7872
DOI
StatusUdgivet - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Chabauty limits of groups of involutions in SL(2,F) for local fields'. Sammen danner de et unikt fingeraftryk.

Citationsformater