Projekter pr. år
Abstract
We classify Chabauty limits of groups fixed by various (abstract) involutions over SL(2,F), where F is a finite field-extension of Q_p, with p>2. To do so, we first classify abstract involutions over SL(2,F) with F a quadratic extension of Q_p, and prove p-adic polar decompositions with respect to various subgroups of p-adic SL_2. Then we classify Chabauty limits of: Then we classify Chabauty limits of: SL(2,F) ⊂ SL(2,E), where E is a quadratic extension of F, of SL(2,R) ⊂ SL(2,C), and of H_θ⊂SL(2,F), where H_θ is the fixed point group of an F-involution θ over SL(2,F).
Originalsprog | Engelsk |
---|---|
Tidsskrift | Communications in Algebra |
Vol/bind | 52 |
Nummer | 4 |
Sider (fra-til) | 1408-1431 |
Antal sider | 24 |
ISSN | 0092-7872 |
DOI | |
Status | Udgivet - 2024 |
Fingeraftryk
Dyk ned i forskningsemnerne om 'Chabauty limits of groups of involutions in SL(2,F) for local fields'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
Limits of p-adic geometries
Ciobotaru, C.-G. (PI)
01/06/2023 → 31/05/2028
Projekter: Projekt › Forskning