Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Forlagets udgivne version
Let C be the subgroup of all diagonal matrices in SL(n,Q p). In the first part of this paper we study and give a classification of the Chabauty limits of SL(n,Q p)-conjugates of C using the action of SL(n,Q p) on its associated Bruhat–Tits building. Along the way we construct an explicit homeomorphism between the Chabauty compactification in sl(n,Q p) of SL(n,Q p)-conjugates of the p-adic Lie algebra of C and the Chabauty compactification of SL(n,Q p)-conjugates of C. In the second part of the paper we compute all of the Chabauty limits for n≤4 (up to conjugacy). In contrast, for n≥7 we prove there are infinitely many SL(n,Q p)-nonconjugate Chabauty limits.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Algebra |
Vol/bind | 595 |
Sider (fra-til) | 69-104 |
Antal sider | 36 |
ISSN | 0021-8693 |
DOI | |
Status | Udgivet - apr. 2022 |
Se relationer på Aarhus Universitet Citationsformater
ID: 228584628