Aarhus Universitets segl

Chabauty limits of diagonal Cartan subgroups of SL(n,Qp)

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Corina-Gabriela Ciobotaru
  • Arielle Leitner, Weizmann Institute of Science, Israel
  • Alain Valette, University of Neuchâtel, Schweiz

Let C be the subgroup of all diagonal matrices in SL(n,Q p). In the first part of this paper we study and give a classification of the Chabauty limits of SL(n,Q p)-conjugates of C using the action of SL(n,Q p) on its associated Bruhat–Tits building. Along the way we construct an explicit homeomorphism between the Chabauty compactification in sl(n,Q p) of SL(n,Q p)-conjugates of the p-adic Lie algebra of C and the Chabauty compactification of SL(n,Q p)-conjugates of C. In the second part of the paper we compute all of the Chabauty limits for n≤4 (up to conjugacy). In contrast, for n≥7 we prove there are infinitely many SL(n,Q p)-nonconjugate Chabauty limits.

OriginalsprogEngelsk
TidsskriftJournal of Algebra
Vol/bind595
Sider (fra-til)69-104
Antal sider36
ISSN0021-8693
DOI
StatusUdgivet - apr. 2022

Se relationer på Aarhus Universitet Citationsformater

ID: 228584628