Chabauty limits of diagonal Cartan subgroups of SL(n,Qp)

Corina-Gabriela Ciobotaru*, Arielle Leitner*, Alain Valette

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

Let C be the subgroup of all diagonal matrices in SL(n,Q p). In the first part of this paper we study and give a classification of the Chabauty limits of SL(n,Q p)-conjugates of C using the action of SL(n,Q p) on its associated Bruhat–Tits building. Along the way we construct an explicit homeomorphism between the Chabauty compactification in sl(n,Q p) of SL(n,Q p)-conjugates of the p-adic Lie algebra of C and the Chabauty compactification of SL(n,Q p)-conjugates of C. In the second part of the paper we compute all of the Chabauty limits for n≤4 (up to conjugacy). In contrast, for n≥7 we prove there are infinitely many SL(n,Q p)-nonconjugate Chabauty limits.

OriginalsprogEngelsk
TidsskriftJournal of Algebra
Vol/bind595
Sider (fra-til)69-104
Antal sider36
ISSN0021-8693
DOI
StatusUdgivet - apr. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Chabauty limits of diagonal Cartan subgroups of SL(n,Qp)'. Sammen danner de et unikt fingeraftryk.

Citationsformater