TY - JOUR
T1 - Cardiovascular Effects of Oral Ketone Ester Treatment in Patients With Heart Failure With Reduced Ejection Fraction
T2 - A Randomized, Controlled, Double-Blind Trial
AU - Berg-Hansen, Kristoffer
AU - Gopalasingam, Nigopan
AU - Christensen, Kristian Hylleberg
AU - Ladefoged, Bertil
AU - Andersen, Mads Jønsson
AU - Poulsen, Steen Hvitfeldt
AU - Borlaug, Barry A
AU - Nielsen, Roni
AU - Møller, Niels
AU - Wiggers, Henrik
PY - 2024/5
Y1 - 2024/5
N2 - BACKGROUND: Heart failure triggers a shift in myocardial metabolic substrate utilization, favoring the ketone body 3-hydroxybutyrate as energy source. We hypothesized that 14-day treatment with ketone ester (KE) would improve resting and exercise hemodynamics and exercise capacity in patients with heart failure with reduced ejection fraction. METHODS: In a randomized, double-blind cross-over study, nondiabetic patients with heart failure with reduced ejection fraction received 14-day KE and 14-day isocaloric non-KE comparator regimens of 4 daily doses separated by a 14-day washout period. After each treatment period, participants underwent right heart catheterization, echocardiography, and blood sampling at plasma trough levels and after dosing. Participants underwent an exercise hemodynamic assessment after a second dosing. The primary end point was resting cardiac output (CO). Secondary end points included resting and exercise pulmonary capillary wedge pressure and peak exercise CO and metabolic equivalents. RESULTS: We included 24 patients with heart failure with reduced ejection fraction (17 men; 65±9 years of age; all White). Resting CO at trough levels was higher after KE compared with isocaloric comparator (5.2±1.1 L/min versus 5.0±1.1 L/min; difference, 0.3 L/min [95% CI, 0.1-0.5), and pulmonary capillary wedge pressure was lower (8±3 mm Hg versus 11±3 mm Hg; difference, -2 mm Hg [95% CI, -4 to -1]). These changes were amplified after KE dosing. Across all exercise intensities, KE treatment was associated with lower mean exercise pulmonary capillary wedge pressure (-3 mm Hg [95% CI, -5 to -1]) and higher mean CO (0.5 L/min [95% CI, 0.1-0.8]), significantly different at low to moderate steady-state exercise but not at peak. Metabolic equivalents remained similar between treatments. In exploratory analyses, KE treatment was associated with 18% lower NT-proBNP (N-terminal pro-B-type natriuretic peptide; difference, -98 ng/L [95% CI, -185 to -23]), higher left ventricular ejection fraction (37±5 versus 34±5%; P=0.01), and lower left atrial and ventricular volumes. CONCLUSIONS: KE treatment for 14 days was associated with higher CO at rest and lower filling pressures, cardiac volumes, and NT-proBNP levels compared with isocaloric comparator. These changes persisted during exercise and were achieved on top of optimal medical therapy. Sustained modulation of circulating ketone bodies is a potential treatment principle in patients with heart failure with reduced ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05161650.
AB - BACKGROUND: Heart failure triggers a shift in myocardial metabolic substrate utilization, favoring the ketone body 3-hydroxybutyrate as energy source. We hypothesized that 14-day treatment with ketone ester (KE) would improve resting and exercise hemodynamics and exercise capacity in patients with heart failure with reduced ejection fraction. METHODS: In a randomized, double-blind cross-over study, nondiabetic patients with heart failure with reduced ejection fraction received 14-day KE and 14-day isocaloric non-KE comparator regimens of 4 daily doses separated by a 14-day washout period. After each treatment period, participants underwent right heart catheterization, echocardiography, and blood sampling at plasma trough levels and after dosing. Participants underwent an exercise hemodynamic assessment after a second dosing. The primary end point was resting cardiac output (CO). Secondary end points included resting and exercise pulmonary capillary wedge pressure and peak exercise CO and metabolic equivalents. RESULTS: We included 24 patients with heart failure with reduced ejection fraction (17 men; 65±9 years of age; all White). Resting CO at trough levels was higher after KE compared with isocaloric comparator (5.2±1.1 L/min versus 5.0±1.1 L/min; difference, 0.3 L/min [95% CI, 0.1-0.5), and pulmonary capillary wedge pressure was lower (8±3 mm Hg versus 11±3 mm Hg; difference, -2 mm Hg [95% CI, -4 to -1]). These changes were amplified after KE dosing. Across all exercise intensities, KE treatment was associated with lower mean exercise pulmonary capillary wedge pressure (-3 mm Hg [95% CI, -5 to -1]) and higher mean CO (0.5 L/min [95% CI, 0.1-0.8]), significantly different at low to moderate steady-state exercise but not at peak. Metabolic equivalents remained similar between treatments. In exploratory analyses, KE treatment was associated with 18% lower NT-proBNP (N-terminal pro-B-type natriuretic peptide; difference, -98 ng/L [95% CI, -185 to -23]), higher left ventricular ejection fraction (37±5 versus 34±5%; P=0.01), and lower left atrial and ventricular volumes. CONCLUSIONS: KE treatment for 14 days was associated with higher CO at rest and lower filling pressures, cardiac volumes, and NT-proBNP levels compared with isocaloric comparator. These changes persisted during exercise and were achieved on top of optimal medical therapy. Sustained modulation of circulating ketone bodies is a potential treatment principle in patients with heart failure with reduced ejection fraction. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05161650.
KW - Administration, Oral
KW - Aged
KW - Cross-Over Studies
KW - Double-Blind Method
KW - Esters/administration & dosage
KW - Exercise Tolerance/drug effects
KW - Female
KW - Heart Failure/drug therapy
KW - Humans
KW - Ketones/administration & dosage
KW - Male
KW - Middle Aged
KW - Stroke Volume/drug effects
KW - Treatment Outcome
KW - Ventricular Function, Left/drug effects
KW - heart failure
KW - echocardiography
KW - ketone bodies
KW - hemodynamics
KW - cardiac output
KW - metabolism
UR - http://www.scopus.com/inward/record.url?scp=85192670436&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.123.067971
DO - 10.1161/CIRCULATIONAHA.123.067971
M3 - Journal article
C2 - 38533643
SN - 0009-7322
VL - 149
SP - 1474
EP - 1489
JO - Circulation
JF - Circulation
IS - 19
ER -