Abstract
Determining the correct orientation of objects can be critical to succeed in tasks like assembly and quality assurance. In particular, near-symmetrical objects may require careful inspection of small visual features to disambiguate their orientation. We propose CADTrack, a digital assistant for providing instructions and support for tasks where the orientation of near-symmetrical objects matters. Additionally, we present a deep learning pipeline for tracking the orientation of near-symmetrical objects. In contrast to existing approaches which require labeled datasets involving laborious data acquisition and annotation processes, CADTrack uses a digital model of the object to generate synthetic data and train a convolutional neural network. Furthermore, we extend the architecture of Mask R-CNN with a confidence prediction branch to avoid errors caused by misleading orientation guidance. We evaluate CADTrack through a user study, comparing our tracking-based instructions to other methods, confirming the benefits of our approach in terms of preference and lower
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the ACM on Human-Computer Interaction |
Redaktører | Ville Mäkelä, Andrés Lucero, Florian Alt, Mark Hancock |
Antal sider | 20 |
Udgivelsessted | New York |
Forlag | Association for Computing Machinery |
Publikationsdato | nov. 2023 |
Artikelnummer | 426 |
DOI | |
Status | Udgivet - nov. 2023 |
Begivenhed | ACM Interactive Surfaces and Spaces - Carnegie Mellon Hamerschlag Hall, Pittsburg, USA Varighed: 5 nov. 2023 → 8 nov. 2023 https://iss2023.acm.org/ |
Konference
Konference | ACM Interactive Surfaces and Spaces |
---|---|
Lokation | Carnegie Mellon Hamerschlag Hall |
Land/Område | USA |
By | Pittsburg |
Periode | 05/11/2023 → 08/11/2023 |
Internetadresse |
Navn | Proceedings of the ACM on Human-Computer Interaction |
---|---|
Nummer | ISS |
Vol/bind | 7 |
ISSN | 2573-0142 |