C*-algebras of homoclinic and heteroclinic structure in expansive dynamics

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

    Abstract

    We unify various constructions of C*-algebras from dynamical systems, specifically, the dimension group construction of Krieger for shift spaces, the corresponding constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov shifts and one-sided shift spaces, respectively, and the constructions of Ruelle and Putnam for Smale spaces. The general setup is used to analyze the structure of the C*-algebras arising from the homoclinic and heteroclinic equivalence relations in expansive dynamical systems; in particular expansive group endomorphisms and automorphisms, and generalized 1-solenoids. For these dynamical systems it is shown that the C*-algebras are inductive limits of homogeneous or sub-homogeneous algebras with one-dimensional spectra.
    OriginalsprogEngelsk
    BogserieMemoirs of the American Mathematical Society
    Vol/bind206
    Nummer970
    Sider (fra-til)1-122
    Antal sider122
    ISSN0065-9266
    DOI
    StatusUdgivet - 2010

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'C*-algebras of homoclinic and heteroclinic structure in expansive dynamics'. Sammen danner de et unikt fingeraftryk.

    Citationsformater