Aarhus University Seal / Aarhus Universitets segl

Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning. / Rogers, John ; Lee, Tsung-Han; Pakdel, Sahar; Xu, Wenhu; Dobrosavljevic, Vladimir; Yao, Yong-Xin; Christiansen, Ove; Lanata, Nicola.

I: Physical Review Research , Bind 3, Nr. 1, 013101, 2021.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Rogers J, Lee T-H, Pakdel S, Xu W, Dobrosavljevic V, Yao Y-X o.a. Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning. Physical Review Research . 2021;3(1). 013101. https://doi.org/10.1103/PhysRevResearch.3.013101

Author

Rogers, John ; Lee, Tsung-Han ; Pakdel, Sahar ; Xu, Wenhu ; Dobrosavljevic, Vladimir ; Yao, Yong-Xin ; Christiansen, Ove ; Lanata, Nicola. / Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning. I: Physical Review Research . 2021 ; Bind 3, Nr. 1.

Bibtex

@article{788e09e20b9848ddac8cd9c7f0e2d782,
title = "Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning",
author = "John Rogers and Tsung-Han Lee and Sahar Pakdel and Wenhu Xu and Vladimir Dobrosavljevic and Yong-Xin Yao and Ove Christiansen and Nicola Lanata",
year = "2021",
doi = "10.1103/PhysRevResearch.3.013101",
language = "English",
volume = "3",
journal = " Physical Review Research ",
issn = "2643-1564",
publisher = "American Physical Society",
number = "1",

}

RIS

TY - JOUR

T1 - Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning

AU - Rogers, John

AU - Lee, Tsung-Han

AU - Pakdel, Sahar

AU - Xu, Wenhu

AU - Dobrosavljevic, Vladimir

AU - Yao, Yong-Xin

AU - Christiansen, Ove

AU - Lanata, Nicola

PY - 2021

Y1 - 2021

U2 - 10.1103/PhysRevResearch.3.013101

DO - 10.1103/PhysRevResearch.3.013101

M3 - Journal article

VL - 3

JO - Physical Review Research

JF - Physical Review Research

SN - 2643-1564

IS - 1

M1 - 013101

ER -