Aarhus Universitets segl

Branching problems in reproducing kernel spaces

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Links

DOI

  • Bent Ørsted
  • Jorge A. Vargas, Universidad Nacional de Cordoba

For a semisimple Lie group G satisfying the equal-rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In our work here we study some of the branching laws for discrete series when restricted to a subgroup H of the same type by combining classical results with recent work of Kobayashi; in particular, we prove discrete decomposability under Harish-Chandra’s condition of cusp form on the reproducing kernel. We show a relation between discrete decomposability and representing certain intertwining operators in terms of differential operators.

OriginalsprogEngelsk
TidsskriftDuke Mathematical Journal
Vol/bind169
Nummer18
Sider (fra-til)3477-3537
Antal sider61
ISSN0012-7094
DOI
StatusUdgivet - 2020

Bibliografisk note

Funding Information:
The work of both authors was partially supported by Aarhus University (Denmark) and the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina).

Publisher Copyright:
© 2020 Duke University Press. All rights reserved.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Se relationer på Aarhus Universitet Citationsformater

ID: 217333152