Branching problems in reproducing kernel spaces

Bent Ørsted, Jorge A. Vargas

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Abstract

For a semisimple Lie group G satisfying the equal-rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In our work here we study some of the branching laws for discrete series when restricted to a subgroup H of the same type by combining classical results with recent work of Kobayashi; in particular, we prove discrete decomposability under Harish-Chandra’s condition of cusp form on the reproducing kernel. We show a relation between discrete decomposability and representing certain intertwining operators in terms of differential operators.

OriginalsprogEngelsk
TidsskriftDuke Mathematical Journal
Vol/bind169
Nummer18
Sider (fra-til)3477-3537
Antal sider61
ISSN0012-7094
DOI
StatusUdgivet - 2020

Fingeraftryk

Dyk ned i forskningsemnerne om 'Branching problems in reproducing kernel spaces'. Sammen danner de et unikt fingeraftryk.

Citationsformater