Aarhus University Seal / Aarhus Universitets segl

Branching laws for small unitary representations of GL(n,C)

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Branching laws for small unitary representations of GL(n,C). / Möllers, Jan; Schwarz, Benjamin.

I: International Journal of Mathematics, Bind 25, Nr. 6, 1450052, 2014.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

Möllers, J & Schwarz, B 2014, 'Branching laws for small unitary representations of GL(n,C)', International Journal of Mathematics, bind 25, nr. 6, 1450052. https://doi.org/10.1142/S0129167X14500529

APA

Möllers, J., & Schwarz, B. (2014). Branching laws for small unitary representations of GL(n,C). International Journal of Mathematics, 25(6), [1450052]. https://doi.org/10.1142/S0129167X14500529

CBE

Möllers J, Schwarz B. 2014. Branching laws for small unitary representations of GL(n,C). International Journal of Mathematics. 25(6):Article 1450052. https://doi.org/10.1142/S0129167X14500529

MLA

Vancouver

Möllers J, Schwarz B. Branching laws for small unitary representations of GL(n,C). International Journal of Mathematics. 2014;25(6). 1450052. https://doi.org/10.1142/S0129167X14500529

Author

Möllers, Jan ; Schwarz, Benjamin. / Branching laws for small unitary representations of GL(n,C). I: International Journal of Mathematics. 2014 ; Bind 25, Nr. 6.

Bibtex

@article{bebd8d0d062f40768a44921f4c28785c,
title = "Branching laws for small unitary representations of GL(n,C)",
abstract = "The unitary principal series representations of $G=GL(n,\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\mathbb{C})\times GL(n-1,\mathbb{C}))\ltimes\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary representations of $G$. We find the explicit branching laws for the restriction of these representations to symmetric subgroups of $G$.",
author = "Jan M{\"o}llers and Benjamin Schwarz",
year = "2014",
doi = "10.1142/S0129167X14500529",
language = "English",
volume = "25",
journal = "International Journal of Mathematics",
issn = "0129-167X",
publisher = "World Scientific Publishing Co. Pte. Ltd.",
number = "6",

}

RIS

TY - JOUR

T1 - Branching laws for small unitary representations of GL(n,C)

AU - Möllers, Jan

AU - Schwarz, Benjamin

PY - 2014

Y1 - 2014

N2 - The unitary principal series representations of $G=GL(n,\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\mathbb{C})\times GL(n-1,\mathbb{C}))\ltimes\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary representations of $G$. We find the explicit branching laws for the restriction of these representations to symmetric subgroups of $G$.

AB - The unitary principal series representations of $G=GL(n,\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\mathbb{C})\times GL(n-1,\mathbb{C}))\ltimes\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary representations of $G$. We find the explicit branching laws for the restriction of these representations to symmetric subgroups of $G$.

U2 - 10.1142/S0129167X14500529

DO - 10.1142/S0129167X14500529

M3 - Journal article

VL - 25

JO - International Journal of Mathematics

JF - International Journal of Mathematics

SN - 0129-167X

IS - 6

M1 - 1450052

ER -