Aarhus University Seal / Aarhus Universitets segl

Braid group actions on matrix factorizations

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskning

Standard

Braid group actions on matrix factorizations. / Arkhipov, Sergey; Kanstrup, Tina.

I: arXiv, 26.10.2015.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskning

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{5f629b9b914444f6ac8759a07a7ceb98,
title = "Braid group actions on matrix factorizations",
abstract = " Let $X$ be a smooth scheme with an action of a reductive algebraic group $G$ over an algebraically closed field $k$ of characteristic zero. We construct an action of the extended affine Braid group on the $G$-equivariant absolute derived category of matrix factorizations on the Grothendieck variety times $T^*X$ with potential given by the Grothendieck-Springer resolution times the moment map composed with the natural pairing. ",
keywords = "math.RT",
author = "Sergey Arkhipov and Tina Kanstrup",
note = "25 pages",
year = "2015",
month = oct,
day = "26",
language = "Udefineret/Ukendt",
journal = "arXiv",

}

RIS

TY - JOUR

T1 - Braid group actions on matrix factorizations

AU - Arkhipov, Sergey

AU - Kanstrup, Tina

N1 - 25 pages

PY - 2015/10/26

Y1 - 2015/10/26

N2 - Let $X$ be a smooth scheme with an action of a reductive algebraic group $G$ over an algebraically closed field $k$ of characteristic zero. We construct an action of the extended affine Braid group on the $G$-equivariant absolute derived category of matrix factorizations on the Grothendieck variety times $T^*X$ with potential given by the Grothendieck-Springer resolution times the moment map composed with the natural pairing.

AB - Let $X$ be a smooth scheme with an action of a reductive algebraic group $G$ over an algebraically closed field $k$ of characteristic zero. We construct an action of the extended affine Braid group on the $G$-equivariant absolute derived category of matrix factorizations on the Grothendieck variety times $T^*X$ with potential given by the Grothendieck-Springer resolution times the moment map composed with the natural pairing.

KW - math.RT

M3 - Tidsskriftartikel

JO - arXiv

JF - arXiv

ER -