Boundedness of M-estimators for linear regression in time series

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


We show boundedness in probability uniformly in sample size of a general M-estimator for multiple linear regression in time series. The positive criterion function for the M-estimator is assumed lower semicontinuous and sufficiently large for large argument. Particular cases are the Huber-skip and quantile regression. Boundedness requires an assumption on the frequency of small regressors. We show that this is satisfied for a variety of deterministic and stochastic regressors, including stationary and random walks regressors. The results are obtained using a detailed analysis of the condition on the regressors combined with some recent martingale results.

TidsskriftEconometric Theory
Sider (fra-til)653-683
Antal sider31
StatusUdgivet - jun. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 136791197