Automated Uncertainty-Based Clustering and Tracking of Modal Parameters Under Strong Variations

Johann Priou, Szymon Greś, Alexander Mendler, Matthieu Perrault, Laurent Guerineau, Michael Döhler*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

1 Citationer (Scopus)

Abstract

The interpretation of stabilization diagrams and the tracking of modes over time are classical tasks in operational modal analysis. In this work, we present a method based on a greedy clustering that efficiently extracts the modal parameters from stabilization diagrams with covariance-driven subspace identification and integrated uncertainty quantification. Stability criteria are strongly based on the estimated modal parameter uncertainties. From the analysis of one, or several, stabilization diagrams, a set of modal parameters is defined, for it to be tracked over time in the next analysis step. The tracking is performed by an active search for the reference parameters in new datasets by combining stability criteria with efficient search heuristics. The resulting algorithm is efficient in tracking large parameter changes, which is demonstrated on the S101 Bridge benchmark under artificially introduced damages, as well as on data of the Munich Test Bridge, where the modal parameters are strongly affected by temperature variations.

OriginalsprogEngelsk
TitelProceedings of the 10th International Operational Modal Analysis Conference, IOMAC 2024 - Volume 1
RedaktørerCarlo Rainieri, Carmelo Gentile, Manuel Aenlle López
Antal sider8
ForlagSpringer Science and Business Media Deutschland GmbH
Publikationsdato2024
Sider581-588
ISBN (Trykt)9783031614200
DOI
StatusUdgivet - 2024
Begivenhed10th International Operational Modal Analysis Conference, IOMAC 2024 - Naples, Italien
Varighed: 22 maj 202424 maj 2024

Konference

Konference10th International Operational Modal Analysis Conference, IOMAC 2024
Land/OmrådeItalien
ByNaples
Periode22/05/202424/05/2024
Navn Lecture Notes in Civil Engineering
Vol/bind514 LNCE
ISSN2366-2557

Fingeraftryk

Dyk ned i forskningsemnerne om 'Automated Uncertainty-Based Clustering and Tracking of Modal Parameters Under Strong Variations'. Sammen danner de et unikt fingeraftryk.

Citationsformater