Automated seminal root angle measurement with corrective annotation

Abraham George Smith*, Marta Malinowska, Anja Karine Ruud, Luc Janss, Lene Krusell, Jens Due Jensen, Torben Asp

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

Measuring seminal root angle is an important aspect of root phenotyping, yet automated methods are lacking. We introduce SeminalRootAngle, a novel open-source automated method that measures seminal root angles from images. To ensure our method is flexible and user-friendly we build on an established corrective annotation training method for image segmentation. We tested SeminalRootAngle on a heterogeneous dataset of 662 spring barley rhizobox images, which presented challenges in terms of image clarity and root obstruction. Validation of our new automated pipeline against manual measurements yielded a Pearson correlation coefficient of 0.71. We also measure inter-annotator agreement, obtaining a Pearson correlation coefficient of 0.68, indicating that our new pipeline provides similar root angle measurement accuracy to manual approaches. We use our new SeminalRootAngle tool to identify single nucleotide polymorphisms (SNPs) significantly associated with angle and length, shedding light on the genetic basis of root architecture.

OriginalsprogEngelsk
Artikelnummerplae046
TidsskriftAoB Plants
Vol/bind16
Nummer5
ISSN2041-2851
DOI
StatusUdgivet - 1 okt. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Automated seminal root angle measurement with corrective annotation'. Sammen danner de et unikt fingeraftryk.

Citationsformater