Atiyah class and sheaf counting on local Calabi Yau fourfolds

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

We discuss Donaldson-Thomas (DT) invariants of torsion sheaves with 2 dimensional support on a smooth projective surface in an ambient non-compact Calabi Yau fourfold given by the total space of a rank 2 bundle on the surface. We prove that in certain cases, when the rank 2 bundle is chosen appropriately, the universal truncated Atiyah class of these codimension 2 sheaves reduces to one, defined over the moduli space of such sheaves realized as torsion codimension 1 sheaves in a noncompact divisor (threefold) embedded in the ambient fourfold. Such reduction property of universal Atiyah class enables us to relate our fourfold DT theory to a reduced DT theory of a threefold and subsequently then to the moduli spaces of sheaves on the base surface using results in arXiv:1701.08899 and arXiv:1701.08902 and . We finally make predictions about modularity of such fourfold invariants when the base surface is an elliptic K3.
OriginalsprogUdefineret/Ukendt
TidsskriftAdvances in Mathematics
Vol/bind368
Nummer2020
ISSN0001-8708
StatusUdgivet - 22 okt. 2018

    Forskningsområder

  • math.AG, math-ph, math.DG, math.MP

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 134768119