Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

    22 Citationer (Scopus)

    Abstract

    This article proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent
    to the conditional maximum likelihood estimator, in multivariate fractional time-series models. The model is parametric and
    quite general and, in particular, encompasses the multivariate non-cointegrated fractional autoregressive integrated moving
    average (ARIMA) model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and
    to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in
    probability, thus making the proof much more challenging than usual. The neighbourhood around the critical point where
    uniform convergence fails is handled using a truncation argument
    OriginalsprogEngelsk
    TidsskriftJournal of Time Series Analysis
    Vol/bind36
    Nummer2
    Sider (fra-til)154–188
    ISSN0143-9782
    DOI
    StatusUdgivet - 2015

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models'. Sammen danner de et unikt fingeraftryk.

    Citationsformater