Asymptotic theory for quadratic variation of harmonizable fractional stable processes

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

In this paper we study the asymptotic theory for quadratic variation of a harmonizable fractional α-stable process. We show a law of large numbers with a non-ergodic limit and obtain weak convergence towards a Lévy-driven Rosenblatt random variable when the Hurst parameter satisfies H ∈ (1/2, 1) and α(1−H) < 1/2. This result complements the asymptotic theory for fractional stable processes.

OriginalsprogEngelsk
TidsskriftTheory of Probability and Mathematical Statistics
Vol/bind110
Sider (fra-til)3-12
Antal sider10
ISSN0094-9000
DOI
StatusUdgivet - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Asymptotic theory for quadratic variation of harmonizable fractional stable processes'. Sammen danner de et unikt fingeraftryk.

Citationsformater