Abstract
In this paper we study the asymptotic theory for quadratic variation of a harmonizable fractional α-stable process. We show a law of large numbers with a non-ergodic limit and obtain weak convergence towards a Lévy-driven Rosenblatt random variable when the Hurst parameter satisfies H ∈ (1/2, 1) and α(1−H) < 1/2. This result complements the asymptotic theory for fractional stable processes.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Theory of Probability and Mathematical Statistics |
Vol/bind | 110 |
Sider (fra-til) | 3-12 |
Antal sider | 10 |
ISSN | 0094-9000 |
DOI | |
Status | Udgivet - 2024 |