TY - JOUR
T1 - Analysis of reactive phosphorus treatment by filter materials at the edge of tile-drained agricultural catchments
T2 - A global view of the current status and challenges
AU - Mendes, Lipe R.D.
AU - Pugliese, Lorenzo
AU - Canga, Eriona
AU - Wu, Shubiao
AU - Heckrath, Goswin J.
N1 - Publisher Copyright:
Copyright © 2022 Elsevier Ltd. All rights reserved.
PY - 2022/12
Y1 - 2022/12
N2 - Phosphorus losses from agriculture have long generated concern due to the ecological impact on surface waters. Here tile-drained agricultural catchments are a critical source for concentrating and transporting phosphorus bioavailable forms or dissolved reactive phosphorus (DRP). Hence, edge-of-field technologies have been introduced to reduce DRP loads. Filter systems have received special attention due to their targeted approach using a permeable filter material (FM) rich in DRP sorbents. This review explores the performance and applicability of FMs in the aforementioned context because of the growing number of studies. An overall analysis revealed that sorption is preferable to precipitation for DRP retention at the edge-of-field, and that FM pH and particle size affect sorption properties and subsequently DRP retention and lifetime. Thus, FMs with predominant amounts of iron and/or aluminium can be recommended. Such materials generally have an appreciable availability of DRP binding sites, strong bonds with DRP and short reaction times, as well as low desorption, which lead to good operation. On the other hand, FMs with predominant amounts of calcium and/or magnesium are restricted to catchments with favourable conditions unless they have optimal reactivity for DRP. The review also found that hydraulic retention time plays a key role in the performance and applicability of FMs, especially in those dependent on precipitation reactions. Therefore, it is crucial that FMs are designed, constructed and managed according to the catchment conditions-including normally varying flow rates and DRP concentrations-in order to ensure successful operation. This reflects in long-term, high and steady net DRP retention along with low costs, thus improving the FM cost-effectiveness, besides discharging non-harmful effluents to aquatic ecosystems.
AB - Phosphorus losses from agriculture have long generated concern due to the ecological impact on surface waters. Here tile-drained agricultural catchments are a critical source for concentrating and transporting phosphorus bioavailable forms or dissolved reactive phosphorus (DRP). Hence, edge-of-field technologies have been introduced to reduce DRP loads. Filter systems have received special attention due to their targeted approach using a permeable filter material (FM) rich in DRP sorbents. This review explores the performance and applicability of FMs in the aforementioned context because of the growing number of studies. An overall analysis revealed that sorption is preferable to precipitation for DRP retention at the edge-of-field, and that FM pH and particle size affect sorption properties and subsequently DRP retention and lifetime. Thus, FMs with predominant amounts of iron and/or aluminium can be recommended. Such materials generally have an appreciable availability of DRP binding sites, strong bonds with DRP and short reaction times, as well as low desorption, which lead to good operation. On the other hand, FMs with predominant amounts of calcium and/or magnesium are restricted to catchments with favourable conditions unless they have optimal reactivity for DRP. The review also found that hydraulic retention time plays a key role in the performance and applicability of FMs, especially in those dependent on precipitation reactions. Therefore, it is crucial that FMs are designed, constructed and managed according to the catchment conditions-including normally varying flow rates and DRP concentrations-in order to ensure successful operation. This reflects in long-term, high and steady net DRP retention along with low costs, thus improving the FM cost-effectiveness, besides discharging non-harmful effluents to aquatic ecosystems.
KW - Agricultural tile drainage water
KW - Calcium
KW - Hydraulic retention time
KW - Iron
KW - Precipitation
KW - Sorption
U2 - 10.1016/j.jenvman.2022.116329
DO - 10.1016/j.jenvman.2022.116329
M3 - Review
C2 - 36183527
AN - SCOPUS:85141892437
SN - 0301-4797
VL - 324
SP - 116329
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 116329
ER -