Institut for Forretningsudvikling og Teknologi

Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • B. Arredondo, Natl Phys Lab, National Physical Laboratory - UK, AIR Div
  • ,
  • B. Romero, Univ Rey Juan Carlos, Universidad Rey Juan Carlos, Area Tecnol Elect
  • ,
  • M. J. Beliatis
  • G. del Pozo, Univ Rey Juan Carlos, Universidad Rey Juan Carlos, Area Tecnol Elect
  • ,
  • D. Martin-Martin, Univ Rey Juan Carlos, Universidad Rey Juan Carlos, Area Tecnol Elect
  • ,
  • J. C. Blakesley, Natl Phys Lab, National Physical Laboratory - UK, AIR Div
  • ,
  • G. Dibb, Natl Phys Lab, National Physical Laboratory - UK, AIR Div
  • ,
  • F. C. Krebs, Tech Univ Denmark, Technical University of Denmark, Dept Energy Convers & Storage
  • ,
  • S. A. Gevorgyan, Tech Univ Denmark, Technical University of Denmark, Dept Energy Convers & Storage
  • ,
  • F. A. Castro, Natl Phys Lab, National Physical Laboratory - UK, AIR Div

In this work we study the degradation of roll-coated flexible inverted organic solar cells in different atmospheres. We demonstrate that impedance spectroscopy is a powerful tool for elucidating degradation mechanisms; it is used here to distinguish the different degradation mechanisms due to water and oxygen. Identical cells were exposed to different accelerated degradation environments using water only, oxygen only, and both water and oxygen simultaneously, all of them enhanced with UV light. The photocurrent is dramatically reduced in the oxygen-degraded samples. Impedance measurements indicate that this phenomenon is attributed to defects introduced by absorption of oxygen, which results in an increase of the acceptor impurity (N-A) at the cathode interface obtained from a Mott-Schottky analysis. Simultaneously, at the anode interface where PEDOT:PSS is not shielded by the substrate, the nature of degradation differs for the water and oxygen degraded samples. While oxygen + UV light decreases the conductivity of the PEDOT:PSS layer, water + UV light changes the PEDOT:PSS work function inducing a depletion region at the anode.

OriginalsprogEngelsk
TidsskriftSolar Energy Materials & Solar Cells
Vol/bind176
Sider (fra-til)397-404
Antal sider8
ISSN0927-0248
DOI
StatusUdgivet - mar. 2018
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 137214222