TY - JOUR
T1 - An optimal semiclassical bound on commutators of spectral projections with position and momentum operators
AU - Fournais, Søren
AU - Mikkelsen, Søren
PY - 2020/12
Y1 - 2020/12
N2 - We prove an optimal semiclassical bound on the trace norm of the following commutators [1(-∞,](Hħ) , x] , [1(-∞,](Hħ) , - iħ∇] and [1(-∞,](Hħ) , ei⟨t,x⟩] , where Hħ is a Schrödinger operator with a semiclassical parameter ħ, x is the position operator, -iħ∇ is the momentum operator, and t in Rd is a parameter. These bounds are in the non-interacting setting the ones introduced as an assumption by N. Benedikter, M. Porta and B. Schlein in a study of the mean-field evolution of a fermionic system.
AB - We prove an optimal semiclassical bound on the trace norm of the following commutators [1(-∞,](Hħ) , x] , [1(-∞,](Hħ) , - iħ∇] and [1(-∞,](Hħ) , ei⟨t,x⟩] , where Hħ is a Schrödinger operator with a semiclassical parameter ħ, x is the position operator, -iħ∇ is the momentum operator, and t in Rd is a parameter. These bounds are in the non-interacting setting the ones introduced as an assumption by N. Benedikter, M. Porta and B. Schlein in a study of the mean-field evolution of a fermionic system.
KW - Commutator estimates
KW - Optimal semiclassics
KW - Weyl law
UR - http://www.scopus.com/inward/record.url?scp=85090462959&partnerID=8YFLogxK
U2 - 10.1007/s11005-020-01328-3
DO - 10.1007/s11005-020-01328-3
M3 - Journal article
AN - SCOPUS:85090462959
SN - 0377-9017
VL - 110
SP - 3343
EP - 3373
JO - Letters in Mathematical Physics
JF - Letters in Mathematical Physics
IS - 12
ER -