An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets

Smith Kashiram Khare, Nikhil Gaikwad, Neeraj Dhanraj Bokde*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


Classification of motor imagery (MI) tasks provides a robust solution for specially-abled people to connect with the milieu for brain-computer interface. Precise selection of uniform tuning parameters of tunable Q wavelet transform (TQWT) for electroencephalography (EEG) signals is arduous. Therefore, this paper proposes robust TQWT for automatically selecting optimum tuning parameters to decompose non-stationary EEG signals accurately. Three evolutionary optimization algorithms are explored for automating the tuning parameters of robust TQWT. The fitness function of the mean square error of decomposition is used. This paper also exploits channel selection using a Laplacian score for dominant channel selection. Important features elicited from sub-bands of robust TQWT are classified using different kernels of the least square support vector machine classifier. The radial basis function kernel has provided the highest accuracy of 99.78%, proving that the proposed method is superior to other state-of-the-art using the same database.
TidsskriftSensors (Switzerland)
StatusUdgivet - okt. 2022


Dyk ned i forskningsemnerne om 'An Intelligent Motor Imagery Detection System Using Electroencephalography with Adaptive Wavelets'. Sammen danner de et unikt fingeraftryk.