An efficient unified model for genome-wide association studies and genomic selection

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

An efficient unified model for genome-wide association studies and genomic selection. / Li, Hengde; Su, Guosheng; Jiang, Li; Bao, Zhenmin.

I: Genetics Selection Evolution, Bind 49, Nr. 1, 64, 24.08.2017.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Li, Hengde ; Su, Guosheng ; Jiang, Li ; Bao, Zhenmin. / An efficient unified model for genome-wide association studies and genomic selection. I: Genetics Selection Evolution. 2017 ; Bind 49, Nr. 1.

Bibtex

@article{273d7ba87f0048f98f7b7cf248820740,
title = "An efficient unified model for genome-wide association studies and genomic selection",
abstract = "Background: A quantitative trait is controlled both by major variants with large genetic effects and by minor variants with small effects. Genome-wide association studies (GWAS) are an efficient approach to identify quantitative trait loci (QTL), and genomic selection (GS) with high-density single nucleotide polymorphisms (SNPs) can achieve higher accuracy of estimated breeding values than conventional best linear unbiased prediction (BLUP). GWAS and GS address different aspects of quantitative traits, but, as statistical models, they are quite similar in their description of the genetic mechanisms that underlie quantitative traits. Methods: Here, we propose a stepwise linear regression mixed model (StepLMM) to unify GWAS and GS in a single statistical model. First, the variance components of the genomic-BLUP (GBLUP) model are estimated. Then, in the SNP selection step, the linear mixed model (LMM) for GWAS is equivalently transformed into a simple linear regression to improve computation speed, and the most significant SNP is selected and included into the evaluation model. In the SNP dropping step, the SNPs in the evaluation model are tested according to the standard errors of their estimated effects. If non-significant SNPs are present, the least significant one is dropped from the model and variance components are re-estimated. We used extended Bayesian information criteria (eBIC) to evaluate the model optimization, i.e. the model with the smallest eBIC is the final one and includes only significant SNPs. Results: We simulated scenarios with different heritabilities with 100 QTL. StepLMM estimated heritability accurately and mapped QTL precisely. Genomic prediction accuracy was much higher with StepLMM than with GBLUP. The comparison of StepLMM with other GWAS and GS methods based on a dataset from the 16th QTLMAS Workshop showed that StepLMM had medium mapping power, the lowest rate of false positives for QTL mapping, and the highest accuracy for genomic prediction. Conclusions: StepLMM is a combination of GWAS and GBLUP. GWAS and GBLUP are beneficial to each other in a single statistical model, GWAS improves genomic prediction accuracy, while GBLUP increases mapping precision and decreases the rate of false positives of GWAS. StepLMM has a high performance in both GWAS and GS and is feasible for agricultural breeding programs and human genetic studies.",
author = "Hengde Li and Guosheng Su and Li Jiang and Zhenmin Bao",
year = "2017",
month = "8",
day = "24",
doi = "10.1186/s12711-017-0338-x",
language = "English",
volume = "49",
journal = "Genetics Selection Evolution",
issn = "0999-193X",
publisher = "BioMed Central Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - An efficient unified model for genome-wide association studies and genomic selection

AU - Li, Hengde

AU - Su, Guosheng

AU - Jiang, Li

AU - Bao, Zhenmin

PY - 2017/8/24

Y1 - 2017/8/24

N2 - Background: A quantitative trait is controlled both by major variants with large genetic effects and by minor variants with small effects. Genome-wide association studies (GWAS) are an efficient approach to identify quantitative trait loci (QTL), and genomic selection (GS) with high-density single nucleotide polymorphisms (SNPs) can achieve higher accuracy of estimated breeding values than conventional best linear unbiased prediction (BLUP). GWAS and GS address different aspects of quantitative traits, but, as statistical models, they are quite similar in their description of the genetic mechanisms that underlie quantitative traits. Methods: Here, we propose a stepwise linear regression mixed model (StepLMM) to unify GWAS and GS in a single statistical model. First, the variance components of the genomic-BLUP (GBLUP) model are estimated. Then, in the SNP selection step, the linear mixed model (LMM) for GWAS is equivalently transformed into a simple linear regression to improve computation speed, and the most significant SNP is selected and included into the evaluation model. In the SNP dropping step, the SNPs in the evaluation model are tested according to the standard errors of their estimated effects. If non-significant SNPs are present, the least significant one is dropped from the model and variance components are re-estimated. We used extended Bayesian information criteria (eBIC) to evaluate the model optimization, i.e. the model with the smallest eBIC is the final one and includes only significant SNPs. Results: We simulated scenarios with different heritabilities with 100 QTL. StepLMM estimated heritability accurately and mapped QTL precisely. Genomic prediction accuracy was much higher with StepLMM than with GBLUP. The comparison of StepLMM with other GWAS and GS methods based on a dataset from the 16th QTLMAS Workshop showed that StepLMM had medium mapping power, the lowest rate of false positives for QTL mapping, and the highest accuracy for genomic prediction. Conclusions: StepLMM is a combination of GWAS and GBLUP. GWAS and GBLUP are beneficial to each other in a single statistical model, GWAS improves genomic prediction accuracy, while GBLUP increases mapping precision and decreases the rate of false positives of GWAS. StepLMM has a high performance in both GWAS and GS and is feasible for agricultural breeding programs and human genetic studies.

AB - Background: A quantitative trait is controlled both by major variants with large genetic effects and by minor variants with small effects. Genome-wide association studies (GWAS) are an efficient approach to identify quantitative trait loci (QTL), and genomic selection (GS) with high-density single nucleotide polymorphisms (SNPs) can achieve higher accuracy of estimated breeding values than conventional best linear unbiased prediction (BLUP). GWAS and GS address different aspects of quantitative traits, but, as statistical models, they are quite similar in their description of the genetic mechanisms that underlie quantitative traits. Methods: Here, we propose a stepwise linear regression mixed model (StepLMM) to unify GWAS and GS in a single statistical model. First, the variance components of the genomic-BLUP (GBLUP) model are estimated. Then, in the SNP selection step, the linear mixed model (LMM) for GWAS is equivalently transformed into a simple linear regression to improve computation speed, and the most significant SNP is selected and included into the evaluation model. In the SNP dropping step, the SNPs in the evaluation model are tested according to the standard errors of their estimated effects. If non-significant SNPs are present, the least significant one is dropped from the model and variance components are re-estimated. We used extended Bayesian information criteria (eBIC) to evaluate the model optimization, i.e. the model with the smallest eBIC is the final one and includes only significant SNPs. Results: We simulated scenarios with different heritabilities with 100 QTL. StepLMM estimated heritability accurately and mapped QTL precisely. Genomic prediction accuracy was much higher with StepLMM than with GBLUP. The comparison of StepLMM with other GWAS and GS methods based on a dataset from the 16th QTLMAS Workshop showed that StepLMM had medium mapping power, the lowest rate of false positives for QTL mapping, and the highest accuracy for genomic prediction. Conclusions: StepLMM is a combination of GWAS and GBLUP. GWAS and GBLUP are beneficial to each other in a single statistical model, GWAS improves genomic prediction accuracy, while GBLUP increases mapping precision and decreases the rate of false positives of GWAS. StepLMM has a high performance in both GWAS and GS and is feasible for agricultural breeding programs and human genetic studies.

UR - http://www.scopus.com/inward/record.url?scp=85028348131&partnerID=8YFLogxK

U2 - 10.1186/s12711-017-0338-x

DO - 10.1186/s12711-017-0338-x

M3 - Journal article

C2 - 28836943

AN - SCOPUS:85028348131

VL - 49

JO - Genetics Selection Evolution

JF - Genetics Selection Evolution

SN - 0999-193X

IS - 1

M1 - 64

ER -