Ambit field modelling of isotropic, homogeneous, divergence-free and skewed vector fields in two dimensions

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

We discuss the application of ambit fields to the construction of stochastic vector fields in two dimensions that are divergence-free and statistically homogeneous and isotropic but are not invariant under the parity operation. These vector fields are derived from a stochastic stream function defined as a weighted integral with respect to a Lévy basis. By construction, the stream function is homogeneous and isotropic and the corresponding vector field is, in addition, divergence-free. From a decomposition of the kernel in the Lévy-based integral, necessary conditions for the violation of parity symmetry are inferred. In particular, we focus on such fields that allow for skewness of projected increments, which is one of the cornerstones of the Kraichnan-Leith-Bachelor theory of two-dimensional turbulence.

OriginalsprogEngelsk
Artikelnummer1265
TidsskriftSymmetry
Vol/bind12
Nummer8
ISSN2073-8994
DOI
StatusUdgivet - aug. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 196176756