Air-heated solid-gas reaction setup for in situ neutron powder diffraction

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

The design and function of a reduction furnace, specially designed for solid-gas in situ monochromatic angular dispersive neutron powder diffraction, is presented. The functionality is demonstrated by performing a reduction experiment of CoFe2O4 nanoparticles at the instrument DMC at SINQ. Heating is provided by an air gun, allowing the sample to reach temperatures in the range of 300-973K within less than 5min. The setup is based on a single-crystal sapphire tube with one end closed. A phi scan of the tube reveals its single-crystal nature, through strong single-crystal reflections, while the remaining background is very low, uniform and flat. CoFe2O4 was reduced using a time resolution of 8min and a sample volume of similar to 2cm(3). By means of sequential Rietveld refinement of the in situ neutron diffraction data, a two-step reduction mechanism was discovered: CoFe2O4 -> Co0.33Fe0.67O -> CoFe2. The setup offers high temperatures, fast temperature stability, large sample volumes and respectable time resolution. The setup has proven to be ideal to carry out investigations of advanced materials under realistic conditions. The ability to investigate real materials in real time under realistic conditions may be a significant advantage for scientific investigations as well as for industrial applications.

OriginalsprogEngelsk
TidsskriftJournal of Applied Crystallography
Vol/bind52
Sider (fra-til)761-768
Antal sider8
ISSN0021-8898
DOI
StatusUdgivet - aug. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 161332511