Active Frequency Measurement on Superradiant Strontium Clock Transitions

Yuan Zhang*, Chongxin Shan*, Klaus Mølmer*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review


We develop a stochastic mean-field theory to describe active frequency measurements of pulsed superradiant emission, studied in a recent experiment with strontium-87 atoms trapped in an optical lattice inside an optical cavity [M. Norcia , Phys. Rev. X 8, 021036 (2018)PRXHAE2160-330810.1103/PhysRevX.8.021036]. Our theory reveals the intriguing dynamics of atomic ensembles with multiple transition frequencies, and it reproduces the superradiant beats signal, noisy power spectra, and frequency uncertainty in remarkable agreement with the experiments. Moreover, using longer superradiant pulses of similar strength and shortening the experimental duty cycle, we predict a short-term frequency uncertainty 7×10-17/τ/s, which makes active frequency measurements with superradiant transitions comparable with the record performance of current frequency standards [M. Schioppo , Nat. Photonics 11, 48 (2017)NPAHBY1749-488510.1038/nphoton.2016.231]. Our theory combines cavity quantum electrodynamics and quantum measurement theory, and it can be readily applied to explore conditional quantum dynamics and describe frequency measurements for other processes such as steady-state superradiance and superradiant Raman lasing.

TidsskriftPhysical Review Letters
Antal sider6
StatusUdgivet - 7 jan. 2022


Dyk ned i forskningsemnerne om 'Active Frequency Measurement on Superradiant Strontium Clock Transitions'. Sammen danner de et unikt fingeraftryk.