We show absence of positive eigenvalues for generalized 2-body hard-core Schrödinger operators under the condition of bounded strictly convex obstacles. A scheme for showing absence of positive eigenvalues for generalized N-body hard-core Schrödinger operators, N≥ 2, is presented. This scheme involves high energy resolvent estimates, and for N=2 it is implemented by a Mourre commutator type method. A particular example is the Helium atom with the assumption of infinite mass and finite extent nucleus.
Originalsprog | Engelsk |
---|
Udgiver | Department of Mathematics, Aarhus University |
---|
Antal sider | 41 |
---|
Status | Udgivet - 2012 |
---|
Navn | Preprints |
---|
Nummer | 6 |
---|
ISSN | 1397-4076 |
---|