A series expansion formula of the scale matrix with applications in CUSUM analysis

Jevgenijs Ivanovs, Kazutoshi Yamazaki*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

We introduce a new Lévy fluctuation theoretic method to analyze the cumulative sum (CUSUM) procedure in sequential change-point detection. When observations are phase-type distributed and the post-change distribution is given by exponential tilting of its pre-change distribution, the first passage analysis of the CUSUM statistic is reduced to that of a certain Markov additive process. We develop a novel series expansion formula of the scale matrix for Markov additive processes of finite activity, and apply it to derive exact expressions of the average run length, average detection delay, and false alarm probability under the CUSUM procedure.

OriginalsprogEngelsk
Artikelnummer104300
TidsskriftStochastic Processes and Their Applications
Vol/bind170
ISSN0304-4149
DOI
StatusUdgivet - apr. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'A series expansion formula of the scale matrix with applications in CUSUM analysis'. Sammen danner de et unikt fingeraftryk.

Citationsformater