A semiclassical Birkhoff normal form for constant-rank magnetic fields

LÉO MORIN

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

1 Citationer (Scopus)

Abstract

This paper deals with classical and semiclassical nonvanishing magnetic fields on a Riemannian manifold of arbitrary dimension. We assume that the magnetic field B =d A has constant rank and admits a discrete well. On the classical part, we exhibit a harmonic oscillator for the Hamiltonian H = |p − A(q)|2 near the zero-energy surface: the cyclotron motion. On the semiclassical part, we describe the semiexcited spectrum of the magnetic Laplacian Lh = (ihd + A)∗(ihd + A). We construct a semiclassical Birkhoff normal form for Lh and deduce new asymptotic expansions of the smallest eigenvalues in powers of h1/2 in the limit h →0. In particular we see the influence of the kernel of B on the spectrum: it raises the energies at order h3/2.

OriginalsprogEngelsk
TidsskriftAnalysis and PDE
Vol/bind17
Nummer5
Sider (fra-til)1593-1532
Antal sider62
ISSN2157-5045
DOI
StatusUdgivet - 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'A semiclassical Birkhoff normal form for constant-rank magnetic fields'. Sammen danner de et unikt fingeraftryk.

Citationsformater